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Figure 1: We propose Joint Gaussian Deformation in Triangle-Deformed Space, decoupling the complex deformation of Gaussian into two
simpler deformations, which are much simpler to represent or learn, consisting of a learnable displacement map-guided Gaussian-triangle
binding and a neural-based deformation refinement, achieving high-fidelity animation and high-frequency details of head avatars.

Abstract
Creating 3D human heads with mesoscale details and high-fidelity animation from monocular or sparse multi-view videos is
challenging. While 3D Gaussian splatting (3DGS) has brought significant benefits into this task, due to its powerful representa-
tion ability and rendering speed, existing works still face several issues, including inaccurate and blurry deformation, and lack
of detailed appearance, due to difficulties in complex deformation representation and unreasonable Gaussian placement. In this
paper, we propose a joint Gaussian deformation method by decoupling the complex deformation into two simpler deformations,
incorporating a learnable displacement map-guided Gaussian-triangle binding and a neural-based deformation refinement, im-
proving the fidelity of animation and details of reconstructed head avatars. However, renderings of reconstructed head avatars
at unseen views still show artifacts, due to overfitting on sparse input views. To address this issue, we leverage synthesized
pseudo views rendered with fitted textured 3DMMs as priors to initialize Gaussians, which helps maintain a consistent and
realistic appearance across various views. As a result, our method outperforms existing state-of-the-art approaches with about
4.3 dB PSNR in novel-view synthesis and about 0.9 dB PSNR in self-reenactment on multi-view video datasets. Our method
also preserves high-frequency details, exhibits more accurate deformations, and significantly reduces artifacts in unseen views.

CCS Concepts
• Computing methodologies → Rendering;

† Corresponding author

1. Introduction

Creating animatable 3D human heads from monocular or sparse
multi-view videos has been a longstanding problem in computer vi-
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sion and graphics. It can enrich 3D face assets in many applications,
including digital humans, film, and virtual reality. Unfortunately, it
is still challenging to reconstruct detailed photorealistic appearance
with high-fidelity animations driven by new poses or expressions,
while maintaining real-time rendering. Particularly, the limited in-
put views further raise difficulties in this task.

The combination of 3D Morphable Models (3DMMs) [BV99]
and Neural Radiance Fields (NeRF) [MST∗20] has brought the op-
portunity to achieve both detailed representation and animatable
capability. However, these methods [GTZN21, ZAB∗22, ZBT23]
have difficulties in achieving real-time rendering, due to their
volume rendering mechanism. Recently, 3D Gaussian splatting
(3DGS) [KKLD23] has shown powerful representation capability
and high-performance rendering speed. Several works [QKS∗24,
MWSZ24,XCL∗24,XGGZ24] have introduced 3DGS into 3D head
reconstruction and animation by binding the Gaussian representa-
tion and the 3DMMs explicitly or implicitly. While these methods
have shown impressive capability, they still encounter several is-
sues. First, these methods represent 3D deformation explicitly or
implicitly, where the former has limited capability for the acces-
sory regions (e.g., mouth, hair, etc.), and the latter has difficulties in
representing the complex deformation mapping from the canonical
space to the deformed space, leading to inaccurate and blurry de-
formation. Second, some mesoscale appearances, like the winkles,
are missing from these approaches, due to unreasonable Gaussian
placement. Last, renderings at unseen views show severe artifacts,
due to the overfitting on the sparse input views.

In this paper, we aim to address the above three issues: inac-
curate and blurry deformation, lack of detailed appearance,
and overfitting artifacts at unseen views. Our key insight is that
the deformation mapping from the canonical space to the deformed
space is complex, which is non-trivial to be represented accurately
with a lightweight neural network. Therefore, we propose a joint
deformation method, including both explicit and implicit compo-
nents, where the former binds the Gaussians with triangles directly
and the latter defines a refinement mapping in the deformed space.
This way, the deformation can be represented more accurately. Fur-
thermore, to enhance detailed appearance, we use a displacement
map to guide the placement of the Gaussians, so that the mesoscale
details can be preserved. Although our joint deformation method
can improve the fidelity and high-frequency details of reconstructed
head avatars, the appearance at unseen views still suffers from ar-
tifacts. To address this, we leverage synthesized pseudo views ren-
dered with fitted textured 3DMMs as priors to initialize Gaussians,
which enhances a consistent and realistic appearance across various
views. Consequently, our method outperforms existing state-of-the-
art approaches numerically, achieving an improvement of about 4.3
dB PSNR in novel-view synthesis and about 0.9 dB PSNR in self-
reenactment on multi-view video datasets [KQG∗23]. In terms of
visual quality, our method preserves high-frequency details such as
wrinkles and hair, displays more accurately matched deformations,
and significantly reduces artifacts at less common/unseen views. To
summarize, our main contributions include:

• We propose a joint Gaussian deformation method, combining ex-
plicit Gaussian-triangle binding with neural-based Gaussian de-

formation refinement, resulting in high-fidelity 3D head recon-
struction and animation.

• We introduce a displacement map guide for Gaussian placement
to enhance the appearance of fine details.

• We utilize synthesized pseudo views as priors to initialize Gaus-
sians, reducing overfitting artifacts at unseen views.

2. Related Work

2.1. 3D human head modeling

Existing works on modeling 3D human heads from monocular or
multi-view videos can be mainly categorized into two types: im-
plicit model-based and explicit model-based approaches.

NeRF [MST∗20] has been introduced into the 3D head recon-
struction by Gafni et al. [GTZN21] by combining it with a low-
dimensional morphable model to satisfy the dynamics of heads.
Wang et al. [WBL∗21] combine discrete and continuous volume
representations to achieve high-resolution rendering of dynamic
human heads and the upper body. While these methods have shown
a remarkable capability for 3D head modeling, they have difficul-
ties in generalizing to novel poses and expressions, and tend to suf-
fer long rendering time. In addition, IMavatar [ZAB∗22] recon-
structs implicit head avatars using neural implicit functions and
models head deformations with learnable blendshapes and skin-
ning fields. Though it improves generalization beyond train-time
expressions, their work is still limited by training time as well as
the efficiency of rendering. Moreover, INSTA [ZBT23] constructs
a surface-embedded implicit radiance field of 3D heads utilizing
neural graphics primitives [MESK22], and achieves relatively high
rendering efficiency.

Typical of explicit 3D head representations, 3DMMs [BV99] use
Principal Component Analysis (PCA) to decompose shape priors
of a 3D head into a low-dimensional space, making it convenient
and stable to manipulate. Afterwards, a number of works introduce
3DMMs or their variants [VBPP06, CWZ∗13, LBB∗17, FFBB21]
into the reconstruction of 3D heads and are able to drive head
avatars based on novel poses and expressions. These works are
typically based on optimization [TZS∗16] or combined with deep
neural networks [TBG∗19, SSL∗20], which are used to predict the
corresponding offsets for novel poses or expressions. Another type
of explicit models is based on point representations, overcoming
the limitations of mesh-based methods, and enabling more efficient
fitting of arbitrary topologies. Pointavatar [ZYW∗23] uses this rep-
resentation to model a deformable 3D head avatar and implements
a self-supervised lighting disentanglement. However, their work
requires a significant number of points, leading to a considerable
computational burden.

2.2. Head reconstruction and animation with 3DGS

Recently, 3DGS [KKLD23] gains much attention for its fidelity in
scene reconstruction as well as its rendering speed, which is mi-
grated to 3D head reconstruction and animation within the last
year [SSS∗24, DNM∗25]. Specifically, 3DGS-based head recon-
struction and animation can also be broadly divided into two cate-
gories. One class of works [QKS∗24] binds Gaussian points to the
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Figure 2: The key of our method is a joint Gaussian deformation which represents the 3D head deformation of Gaussians with two compo-
nents (an explicit component and an implicit component). Specifically, in the explicit deformation component, Gaussians parameterized in
the triangle space are bound to triangles guided by displacement maps, with attributes initialized synthesized pseudo view-based Gaussian
prior module. Then, Gaussians are mapped to the deformed world space via triangle-Gaussian transformation. In the implicit deformation
component, Gaussian positions, together with a spatial semantic feature encoded by a learnable triplane and the expression, are fed into a
refinement network to predict offsets, leading to final refined deformed Gaussians.

triangular facets of a 3DMM, explicitly following the movement of
vertices on the 3DMM driven by pose or expression. Similarly, Ma
et al. [MWSZ24] model arbitrary facial expressions of a head as
linear combinations of a base head model and a set of expression
blendshapes using 3D Gaussian representations. While these meth-
ods offer low training and rendering costs, they are limited by the
underlying 3DMMs, struggling with unmodeled regions and fine
details like wrinkles.

Another class of works [CWL∗24,GKR∗24,WXL∗23,TKG∗24]
relies on neural networks to predict changes in Gaussian point at-
tributes based on input expression codes, using neutral meshes ob-
tained from methods such as 3DMMs or implicit signed distance
field (SDF). FlashAvatar [XGGZ24] embeds a uniform 3D Gaus-
sian field on the surface of a parametric face model and learns addi-
tional spatial offsets to capture details. However, their work forgoes
adaptive density control for Gaussian points in order to achieve
faster rendering speed, limiting its ability to capture high-frequency
details of heads. Xu et al. [XCL∗24] utilize a fully learned multi-
layer perceptron (MLP)-based deformation field to animate neutral
3D Gaussians of heads based on a geometry-guided initialization.
Due to the heavy reliance on neural components, their method re-
quires a considerable amount of training time.

Different from the above methods, we present a joint Gaussian

deformation through decoupling the complicated deformation into
two simpler components including displacement map-guided ex-
plicit deformation and implicit deformation refinement.

3. Preliminary

3DGS. 3DGS [KKLD23] reconstructs a static scene using a series
of anisotropic 3D Gaussian based on input images and camera pa-
rameters. Each 3D Gaussian is defined as:

G(x) = e−
1
2 (x−µ)T

Σ
−1(x−µ), (1)

where µ is the position of the Gaussian, and Σ is the anisotropic
covariance matrix of the Gaussian. Σ is further decomposed into a
scaling matrix S and a rotation matrix R, represented by a scaling
vector s and a unit quaternion q respectively as Σ = RSST RT . In
addition, each Gaussian contains a series of spherical harmonic co-
efficients h to represent color c as well as an opacity parameter o.
When an image is to be rendered, the color of each pixel is calcu-
lated by blending all the Gaussians overlapping the pixel as:

C = ∑
i∈N

ciαi

i−1

∏
j=1

(1−α j), (2)

where α represents the blending weight obtained by the 2D projec-
tion of the 3D Gaussian multiplied by the opacity o.

© 2025 The Author(s).
Proceedings published by Eurographics - The European Association for Computer Graphics.



4 of 11 J Lu & K Guang & C Hao & K Sun & J Yang & J Xie & B Wang / Joint Gaussian Deformation in Triangle-Deformed Space

GaussianAvatars. GaussianAvatars [QKS∗24] explicitly binds
Gaussian points to the tracked meshes and establishes a mapping
of Gaussian attributes between the local triangle space and the de-
formed global space. Specifically, the attributes of each Gaussian
point in the local space are defined as Gloc = {µ, q, s, o, h}, with the
corresponding triangle transformation as follows:

µt = SQµ+P,qt = Qq,st = Ss, (3)

where S denotes the scaling of the triangle, Q represents the orien-
tation of the triangle in the global space, and P indicates the mean
position of the triangle’s three vertices. For simplicity, we define the
above three metrics of the triangles as M. For each time step, the
local Gaussian attributes Gloc are converted into the corresponding
global Gaussian attributes Gglob = {µt ,qt ,st ,o,h} used for image
rendering.

4. Our method

In this paper, our aim is to reconstruct photorealistic appearance
of 3D heads with mesoscale details, maintain high-fidelity anima-
tions driven by new poses or expressions given monocular or sparse
multi-view videos.

Since 3DGS has shown impressive representation capability and
high-performance rendering speed, we opt for 3D Gaussians as our
representation. The key to achieving our target is the representa-
tion capability of 3D Gaussians for complex deformation of 3D
heads under various expressions and poses and detailed appear-
ance given sparse views. To achieve this, we propose a joint method
with explicit-implicit Gaussian deformation (Sec. 4.1) for accurate
deformation. We also introduce a displacement map-guided Gaus-
sian placement to preserve detailed appearance. Then, we propose
a synthesized pseudo view-based Gaussian prior (Sec. 4.2) to pre-
vent overfitting artifacts at unseen views. Our pipeline is illustrated
in Figure 2.

4.1. Joint Gaussian deformation

Since we target an animatable 3D Gaussian representation under
various poses and expressions, the deformation operation needs
to be represented accurately. On one hand, existing explicit ap-
proaches represent the deformation directly by binding Gaussian
and triangles, leading to blurriness for accessory regions, which
lack 3DMM definition. On the other hand, other methods learn the
deformation from the canonical space to the deformed space with
a small MLP, leading to inaccurate deformation, due to its limited
representation ability. To this end, we propose a joint Gaussian de-
formation method representing the deformation step by step, which
includes both explicit and implicit components. The explicit com-
ponent binds the Gaussians with triangles in a learnable manner,
and the implicit component further refines the deformation in the
deformed space with a small MLP.

Displacement map-guided explicit deformation. Given multi-
view or monocular videos, we first extract the corresponding shape
parameters β, expression parameters σ, and pose parameters θ us-
ing FLAME tracking [QKS∗24]. We also build a coarse mesh
with linear blend skinning (LBS) [FFBB21]. Then, we bind each
Gaussian point to the corresponding triangular facet of the coarse

Deformed Space
Implicit Refinement (Ours)

Canonical Space Deformed Space

Deformation 
Network

Refinement 
Network

Deformation 
Map

Deformation 
Map

Only Implicit Deformation

Figure 3: Instead of directly predicting Gaussian attribute offsets
from the canonical space, we adopt the implicit refinement in the
deformed space, which predicts smaller deformation that is easier
to learn, significantly improving the fidelity of head avatars.

mesh, similar to GaussianAvatar, as shown in Sec. 3. The Gaus-
sian points are defined in the local triangle space, and are mapped
to the global/world space considering the triangle transformation
(Eqn. 3).

To improve the representation of detailed appearances, we intro-
duce a displacement map that serves as a guide for the placement of
the Gaussians, which allows for the preservation of the mesoscale
details. Specifically, we use a predefined dense FLAME template to
map the coarse mesh onto a finer topology by subdividing each tri-
angle uniformly into ten facets, following DECA [FFBB21]. Then,
we adjust the detailed mesh vertices according to the displacement
maps extracted from the multi-view/monocular videos, resulting in
about 110k triangles. Thus, each Gaussian point is bound to a facet
of the detailed mesh, with the corresponding displacement map-
guided global Gaussian attributes Gdisp after the triangle transfor-
mation, based on the metrics M of the subdivided triangles, repre-
sented as follows:

Gdisp = {µt ,qt ,st ,o,h}. (4)

Please note that, the expression parameters σ, and pose parameters
θ are updated during training. Therefore, the metrics M of the trian-
gular facets are all learnable. This is a key difference from FlashA-
vatar [XGGZ24].

Implicit deformation refinement with per-Gaussian feature em-
beddings. On top of the Gaussians deformed by the triangle trans-
formation, we further refine the Gaussian attributes (position, rota-
tion, scaling, and opacity) with a small MLP, as illustrated in Fig-
ure 3. We encode each Gaussian into a feature with a learnable
triplane representation T , consisting of three orthogonal feature
planes aligned with axes, in order to store spatial information of the
head avatar. We then decode the Gaussian basis, feature embedding,
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and expression into Gaussian attribute offsets, which are added to
the Gaussian basis, forming the refined Gaussian attributes.

Specifically, for any global Gaussian position attribute µt , we
query the corresponding feature vector from the triplane T by pro-
jecting it onto the axis-aligned feature planes. We then concatenate
three bilinear interpolated features to form the per-Gaussian feature
as:

f = fxy ⊕ fxz ⊕ fyz, (5)

where fxy, fxz, and fyz respectively denote the features of µt on the
three feature planes.

Then, the triplane feature f and the global Gaussian position at-
tribute µt , along with the expression parameters σ are decoded by a
small MLP to predict the offsets for the global Gaussian attributes:

{∆µt ,∆qt ,∆st ,∆o}= φ(µt , f ;σ), (6)

where φ represents the MLP used to predict offsets, while ∆µt , ∆qt ,
∆st , and ∆o denote the predicted offsets for the global Gaussian
attributes µt , qt , st , and o, respectively. Then, the final global refined
deformed Gaussian attributes are expressed as follows:

Gfine = {µt ⊕∆µt ,qt ⊕∆qt ,st ⊕∆st ,o⊕∆o,h}. (7)

4.2. Synthesized pseudo views as Gaussian prior

Thanks to the joint deformation, our method can effectively im-
prove the fidelity and high-frequency details of reconstructed head
avatars. However, when the viewing angles deviate significantly
from those in the training set, the head avatars exhibit noticeable
artifacts. This is essentially due to overfitting on the sparse training
views. As adopted by Xu et al. [XCL∗24], a straightforward ap-
proach is to apply screen-space super resolution. However, this in-
evitably compromises the 3D consistency of head avatars and leads
to texture flickering. Our key insight is that although acquiring real
dense-view data is challenging, we can leverage the accessibility
of synthesized data and the flexibility of rendering views, incor-
porating them as geometry and color priors. One possible way is
to leverage the reconstructed 3DMM models to synthesize pseudo-
view images and supervise Gaussian optimization with these im-
ages. Unfortunately, these pseudo-view images exhibit low quality
compared to the input videos, which leads to degraded reconstruc-
tion if using them for supervision directly. Alternatively, we intro-
duce a simple yet effective way to inject these priors into the Gaus-
sian optimization, which utilizes them for Gaussian initialization,
and then updates the Gaussians with the real data.

Specifically, we reconstruct a textured FLAME mesh for each
identity using Photometric FLAME Fitting [LBB∗17], and gener-
ate different synthesized images under a densely distributed set of
camera poses. Then, we use these synthesized pseudo-view images
for initial Gaussian optimization. To make the optimization of the
Gaussian attribute prior relatively lightweight and easy to converge,
we only perform the explicit deformation. We first refine the mesh
to create a finer version and initialize Gaussians by binding them
to the mesh, then optimize thes e Gaussians using the synthesized
pseudo views, adjusting their attributes, such as position and rota-
tion. The optimized identity-specific Gaussian prior is injected into

the Gaussian attributes in the triangle space of the identity as ini-
tialization for subsequent optimization:

Ginit = {µ0,q0,s0,o0,h0}. (8)

5. Experiments

5.1. Implementation details

We implement our method based on PyTorch [PGC∗17] and train
it with the Adam optimizer [Kin14] on an NVIDIA GeForce RTX
3090 with the following loss:

L= Lc +λSobelLSobel +λµLµ +λsLs +λφLφ, (9)

where Lc refers to the same loss function as in 3DGS [KKLD23],
combining L1 with D-SSIM term, and LSobel is the L2 distance
between the Sobel operator [KVB88] (with a radius of 1) results
of rendered images and ground truth images. Lµ and Ls are the
position loss and scaling loss with threshold used in GaussianA-
vatars [QKS∗24] to regularize the local position and scaling at-
tributes of Gaussian points. Lφ means L2 regularization on the
position offset predicted by the refinement network, encouraging
small offset predictions. All the λ in the above loss are the weights
used to balance the loss terms. λSobel , λµ, λs, and λφ are set as
1.0, 1e-2, 1.0, and 5e-3, respectively. For the joint Gaussian defor-
mation optimization, the dimension of the triplane representation
is 3×64×64×32 (with a resolution of 64×64 and 32 channels),
trained with a learning rate of 1e-4, and the refinement MLP con-
sists of 5 layers with a width of 256, trained with a learning rate of
4e-5. For Gaussian point densification, we adopt improved adaptive
density control [GKR∗24]. The training iterations for the synthe-
sized pseudo view-based Gaussian prior are set to 300,000, taking
about 4 hours. For the joint Gaussian deformation, training itera-
tions are set to 600,000, taking about 30 hours.

5.2. Setup

Dataset. We conduct experiments on nine subjects from the
multi-view dataset NeRSemble [KQG∗23] and eight subjects from
the monocular dataset INSTA [ZBT23]. For each subject in the
NeRSemble dataset, each time step includes 16 images from differ-
ent viewpoints, all downsampled to a resolution of 802×550. The
image resolution for the INSTA dataset is uniformly 512×512. All
other preprocessing steps are consistent with those used in Gaus-
sianAvatars [QKS∗24].

Comparison methods. We compare our proposed method
with three state-of-the-art approaches: FlashAvatar [XGGZ24],
GHA [XCL∗24], and GaussianAvatars [QKS∗24]. We employ
three widely-used metrics: Peak Signal-to-Noise Ratio (PSNR),
Structural Similarity Index Measure (SSIM) [WBSS04], and Per-
ceptual LPIPS [ZIE∗18]. Furthermore, since GHA leverages super-
resolution, we train it at a resolution of 2048×2048, as specified in
their original paper. To ensure a fair comparison, we subsequently
downsample the rendered images from GHA to match the resolu-
tion used by the other methods before conducting the metric evalu-
ations.
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Table 1: Quantitative comparison between our method and comparison methods on NeRSemble dataset, with the best results in bold.

Novel View Synthesis Self-Reenactment
PSNR ↑ SSIM ↑ LPIPS ↓ PSNR ↑ SSIM ↑ LPIPS ↓

FlashAvatar 23.92 0.859 0.148 20.43 0.833 0.174
GHA 30.34 0.926 0.045 24.91 0.903 0.057
GaussianAvatars 31.02 0.936 0.065 25.81 0.910 0.076
Ours 35.30 0.958 0.033 26.67 0.910 0.053

          FlashAvatar                               GHA                          GaussianAvatars                           Ours                                      GT

Figure 4: Qualitative comparison between our method and comparison methods on novel-view synthesis of head avatars. Our method can
reconstruct more high-frequency details.

Table 2: Quantitative comparison between our method and com-
parison methods on INSTA dataset, with the best results in bold.

Self-Reenactment
PSNR ↑ SSIM ↑ LPIPS ↓

FlashAvatar 27.69 0.937 0.065
GHA 27.76 0.931 0.040
GaussianAvatars 27.96 0.935 0.045
Ours 28.97 0.942 0.037

5.3. Comparison with previous methods

The training costs for previous work and our approach under a sin-
gle RTX 3090 are as follows: GaussianAvatars (9 hours), GHA (48
hours), and ours (30 hours + 4 hours). Regarding inference time,
previous work and our method using a single RTX 3090 are as fol-
lows: GaussianAvatars (187 fps), GHA (22 fps), and ours (35 fps).

Novel view synthesis. We trained on 15 view images from the
NeRSemble dataset, reserving the remaining view for evaluating

rendering quality of reconstructed head avatars under novel views
driven by expressions from the training sequence. As illustrated in
Table 1 and Figure 4, our method outperforms others, particularly
in recovering high-frequency details.

Self-reenactment. We evaluate the rendering quality of recon-
structed head avatars driven by unseen expressions in the 16-view
NeRSemble dataset and the monocular INSTA dataset. As shown
in Table 1, Table 2, and Figure 5, our method achieves the highest
quality in both numerical and visual results, showing more accurate
deformations and enhanced facial details with new expressions.

Cross-identity reenactment. We assess the rendering quality of
the reconstructed head avatars driven by expressions from other
subjects. As illustrated in Figure 6, our method accurately enables
cross-identity expression transfer for reconstructed head avatars,
recovering the details of the driving expressions while maintaining
high-fidelity quality and reducing the occurrence of artifacts.

Uncommon view rendering. We evaluate the rendering quality of

© 2025 The Author(s).
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          FlashAvatar                               GHA                          GaussianAvatars                           Ours                                      GT

Figure 5: Qualitative comparison between our method and comparison methods on self-reenactment of head avatars. Our method can exhibit
more accurate deformations and finer facial details under new expressions.

FlashAvatar                              GHA                          GaussianAvatars                           Ours                         Driving Expression    

Figure 6: Qualitative comparison between our method and comparison methods on cross-identity reenactment of head avatars. Our method
can recover intricate details of driving expressions and mitigate appearance of artifacts.
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        FlashAvatar                      GHA                     GHA (w/o SR)          GaussianAvatars           Ours (w/o Prior)                    Ours

Figure 7: Qualitative comparison between our method and comparison methods on uncommon view rendering of head avatars. Note that,
as GHA incorporates super-resolution (SR), we also present results after training without the SR module, exhibiting noticeable overfitting
artifacts. Additionally, we present results of our method without synthesized pseudo view-based Gaussian prior. Our method can significantly
reduce overfitting artifacts.

     Baseline            + Dis. Map          + Imp. Ref                 GT       

Figure 8: Qualitative comparison of ablation study. “Disp. Map"
means the displacement map, and “Imp. Ref." means the implicit
Gaussian deformation refinement.

       Baseline (Bsl)        Bsl + more Gaussian  
Bsl + Dis. Map
(Our Choice)  

Figure 9: Ablation study on displacement map guidance. Instead of
directly increasing the Gaussian points, we leverage displacement
maps for geometric guidance to aid in their placement.

the reconstructed head avatars at uncommon views, which are dis-
tant from those in the training set, as shown in Figure 7. FlashA-
vatar and GaussianAvatars exhibit a noticeable degradation in vi-
sual quality, revealing a significant gap compared to our method.
While GHA’s fully implicit approach with super-resolution results
in facial local smoothness due to the inductive bias of MLPs, it still
shows unrealistic artifacts in the hair and neck regions, likely due to
inaccuracies in the Gaussian points’ opacity and color. In contrast,
our method, with synthesized pseudo view information guidance,
enhances consistent and realistic appearances at uncommon views.

5.4. Ablation study

We conduct ablation studies on three key components of our
method. We progressively add our proposed components, investi-
gating their impact from both numerical and visual perspectives,
and the results are presented in Table 3 and Figure 8. The quan-
titative and qualitative quality gap highlights the effectiveness and
importance of each component in our method. We begin with Gaus-
sianAvatars [QKS∗24] as the baseline, which fails to capture high-
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Table 3: Ablation study on three key components, with the
best/second-best results in bold/underscored. "Disp. Map" means
the displacement map, "Imp. Ref." means the implicit Gaussian de-
formation refinement, and "Prior" means the synthesized pseudo
view-based Gaussian prior. "Prior" enhances uncommon view ren-
dering quality, though it slightly reduces self-reenactment numeri-
cal performance evaluated with common views in the dataset.

Novel View Synthesis Self-Reenactment
PSNR↑SSIM↑LPIPS↓PSNR↑SSIM↑LPIPS↓
32.89 0.955 0.043 27.78 0.926 0.052

+Disp. Map 33.01 0.956 0.035 28.04 0.925 0.044
+Imp. Ref. 36.74 0.972 0.022 28.85 0.931 0.035
+Prior 37.02 0.974 0.020 28.67 0.929 0.032

frequency details and recover the appearance of parts not modeled
by 3DMMs, as shown in the first column of Figure 8.

Displacement map guidance. We enhance the baseline with dis-
placement maps, providing mesostructure-aware geometric guid-
ance in the explicit Gaussian deformation, which aids in the recov-
ery of high-frequency details such as wrinkles, as illustrated in the
second column of Figure 8. To further validate the role of displace-
ment map guidance, we increase the number of Gaussian points by
solely adopting a lower densification gradient threshold and com-
pare this approach with our proposed method. Figure 9 shows that
displacement maps offer geometric guidance, enabling better Gaus-
sian point placement, which helps recover details.

Implicit Gaussian deformation refinement. Next, we introduce
implicit Gaussian deformation refinement, which further refines
the Gaussian points after displacement map-guided explicit opti-
mization. As shown in Table 3, this component provides signifi-
cant improvements for novel view synthesis and self-reenactment.
The third column of Figure 8 illustrates that high-frequency details,
particularly inside the mouth, are further optimized, as the explicit
Gaussian optimization relies on 3DMMs that lack accurate model-
ing for these regions.

Synthesized pseudo view-based Gaussian prior. Finally, we in-
corporate the synthesized pseudo view-based Gaussian prior. The
last column of Figure 7 demonstrates that the introduction of the
synthesized Gaussian prior effectively enhances the appearance re-
alism and consistency of the reconstructed head avatars. Note that,
the introduction of the synthesized pseudo view-based Gaussian
prior results in a slight numerical decrease in performance for self-
reenactment, as measured by PSNR and SSIM metrics. This reduc-
tion is attributed to the evaluation being performed using common
views from the dataset.

Effect of synthesized pseudo view-based Gaussian prior with
varying numbers of input views.

We perform additional ablation study of the synthesized pseudo
view-based Gaussian prior with varying input view counts, using
the four most extreme remaining views in the NeRSemble dataset
for quantitative and qualitative comparisons. As illustrated in Ta-
ble 4 and Figure 10, introducing the prior consistently enhances
the fidelity of reconstructed head avatars under extreme views, ef-
fectively reducing overfitting artifacts. Notably, the fewer the input

     4 Input Views              8 Input Views             12 Input Views 

Ours 

Ours (w/o Prior) 

Figure 10: Qualitative comparison of ablation study on synthe-
sized pseudo views-based Gaussian prior. Introducing the prior re-
duces overfitting artifacts of head avatars under extreme views.
Moreover, the fewer the input views, the more pronounced the
prior’s effect on head fidelity.

views, the more significant the prior’s impact on the fidelity and
realism of reconstructed head avatars.

5.5. Discussion and limitations

While our method demonstrates promising results, it has some lim-
itations that need to be addressed. It is still constrained by the
3DMMs and the expression parameters derived from them. This de-
pendency may introduce challenges in driving reconstructed head
avatars for extreme expressions, potentially leading to noticeable
artifacts that compromise the visual realism. Additionally, the syn-
thesized pseudo view-based Gaussian prior proposed in our work
is inherently limited by the quality of the synthesized data. We be-
lieve that refining the per-identity fitting model can help bridge the
gap between synthesized data and real video data, ultimately fur-
ther enhancing the fidelity of the reconstructed head avatars when
viewed from uncommon views. Moreover, the introduction of the
implicit refinement component and Gaussian prior inevitably in-
curs additional overhead during training and inference. During the
self-reenactment with novel expressions and poses as input, flick-
ering artifacts may occasionally appear in the hair region, mainly
due to slight instability in inter-frame prediction. This issue stems
from the implicit component, and it is also noticeable in the GHA
results. Addressing this limitation requires considering the coher-
ence among frames, and we leave it for future work.

6. Conclusion

In this paper, we present a novel method for creating 3D hu-
man heads with mesoscale details and high-fidelity animations
from monocular or sparse multi-view videos. By integrating a joint
deformation that combines a learnable displacement map-guided
Gaussian-triangle binding with a neural-based deformation refine-
ment, we significantly enhance the fidelity of the reconstructed
head avatars. In addition, the incorporation of synthesized pseudo

© 2025 The Author(s).
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Table 4: Ablation study on synthesized pseudo views-based Gaussian prior, with the best results in bold. We gradually increase the number
of training input views in the NeRSemble dataset, using four extreme views for quantitative comparison, both with and without the prior.

4 Input Views 8 Input Views 12 Input Views
PSNR ↑ SSIM ↑ LPIPS ↓ PSNR ↑ SSIM ↑ LPIPS ↓ PSNR ↑ SSIM ↑ LPIPS ↓

Ours (w/o Prior) 15.73 0.694 0.318 20.38 0.802 0.183 22.46 0.835 0.137
Ours 16.72 0.761 0.250 21.68 0.845 0.133 23.28 0.865 0.110

views rendered with fitted textured 3DMMs provides a robust prior,
ensuring consistent and realistic appearances across various views.
Many promising directions remain for future work. Creating 3D hu-
man heads in occluded views will be essential for broadening the
applicability of our method in diverse real-world settings. Another
interesting potential work is incorporating head-related priors from
large language models for head reconstruction and animation.
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